1概况
雷击是一种自然现象,它能释放出巨大的能量、具有极强大的破坏能力。几个世纪来,人类通过对雷击破坏性的研究、探索,对雷电的危害采取了一定的预防措施,有效地降低了雷害。
近年来,随着微电子技术的不断发展,自动控制系统在生产生活各个方面的使用越来越广,人们在受益于微电子的极大方便的同时,也受到其一旦损坏就损失巨大的困扰。实际中,在增加自动控制系统的时候,往往对自动控制系统的防雷未加考虑或考虑不够的情况较多,一旦有雷电波侵入,设备损坏一般是巨大的,有的甚至使整个系统瘫痪,造成无可挽回的损失。仅1999年6月到2001年8月一年多的时间里,可查的由于雷击发生的弱电损坏就有四次之多。樊庄变电站线路落雷,造成主控地与设备之间的电位差而损坏大量的保护设备;南郊变电站的微波塔落雷,由于感应过电压而损坏大量的通讯、远动设备损坏;西万庄变电站的微波塔落雷,由于地电位差造成大量的通讯远动设备损坏;北郊变电站微波塔落雷,造成大量的保护、运动、通讯设备损坏。
分析这几次故障的主要原因是由于一次设备发生雷击后在弱电设备造成的浪涌超过了设备承受的能力而损坏设备的,浪涌的主要形式是电源浪涌、信号浪涌。而这种浪涌在新建或扩建设备时又往往不被重视,所以本文在介绍常用的弱电防雷的同时,重点探讨了浪涌对弱电设备的危害及预防措施。
2 弱电设备雷电危害的主要原因分析
雷电会导致多种不同形式的危害,没有任何一种办法可以全面防止雷电的危害,通过各种有效的办法可将雷害的程度降到最低,在多年的实际中人们对直击雷、感应雷、球形雷的认识比较高,防护也相对完善,但对雷电浪涌的防护意识和防护措施相对比较薄弱,以上所列的四次典型的雷击弱电设备的情况就是对弱电防雷考虑不够造成的。其主要的雷电形式及雷害情况有以下几种情况:
(1)直击雷是指雷电直接击在建筑物构架、动植物上,因电效应、热效应和机械效应等造成建筑物等损坏以及人员的伤亡。
(2)感应雷是雷电在雷云之间或雷云对地放电时,在附近的户外传输信号线路、埋地电力线、设备间连接线产生电磁感应并侵入设备,使串联在线路中间或终端的电子设备遭到损害。感应雷虽然没有直接雷猛烈,但其发生的几率比直击雷高得多。
(3)雷电浪涌是近年来由于微电子的不断使用引起人们极大重视的一种雷电危害形式,同时其防护方式也不断完善。最常见的电子设备危害不是由于直接雷击引起的,而是由于雷击发生时在电源和通讯线路中感应的电流浪涌引起的。一方面由于电子设备内部结构高度集成化(VLSI芯片),从而造成设备耐压、耐过电流的水平下降,对雷电(包括感应雷及操作过电压浪涌)的承受能力下降,另一方面由于信号来源路径增多,系统较以前更容易遭受雷电波侵入。浪涌电压可以从电源线或信号线等途径窜人电脑设备。美国GE公司测定一般家庭、饭店、公寓等低压配电线(110V)在10000h(约一年零两个月)内在线间发生的超出原工作电压一倍以上的浪涌电压次数达到800余次,其中超过1000V的就有300余次。这样的浪涌电压完全有可能一次性将电子设备损坏。信号系统浪涌电压的主要来源是感应雷击、电磁干扰、无线电干扰和静电干扰。金属物体(如电话线)受到这些干扰信号的影响,会使传输中的数据产生误码,影响传输的准确性和传输速率。排除这些干扰将会改善网络的传输状况。
3 弱电设备防雷措施
按照防护范围可将弱电设备的防雷措施分为两类,外部防护和内部防护。外部防护是指对安装弱电设备的建筑物本体的安全防护,可采用避雷针、分流、屏蔽网、均衡电位、接地等措施,这种防护措施人们比较重视、比较常见,相对来说比较完善。内部防护是指在建筑物内部弱电设备对过电压(雷电或电源系统内部过电压)的防护,其措施有:等电位联结、屏蔽、保护隔离、合理布线和设置过电压保护器等措施,这种措施相对来说是比较新的办法,也不够完善,下边对弱电设备防雷进行探讨,主要对雷电浪涌及地电位差的防护提出一些自己的看法。
3.1 弱电设备的外部防护
弱电设备的外部防护首先是使用建筑物的避雷针将主要的雷电流引人大地;其次是在将雷电流引人大地的时候尽量将雷电流分流,避免造成过电压危害设备;第三是利用建筑物中的金属部件以及钢筋可以作为不规则的法拉第笼,起到一定的屏蔽作用,如果建筑物中的设备是低压电子逻辑系统、遥控、小功率信号电路的电器,则需要加装专门的屏蔽网,在整个屋面组成不大于5m-5m,6m-4m的网格,所有均压环采用避雷带等电位连接;第四是建筑物各点的电位均衡,避免由于电位差危害设备;第五是保障建筑物有良好的接地,降低雷击建筑物时接点电位损坏设备。
3.2 弱电设备的内部保护
从EMC(电磁兼容)的观点来看,防雷保护由外到内应划分为多级保护区。最外层为0级,是直接雷击区域,危险性最高,主要是由外部(建筑)防雷系统保护,越往里则危险程度越低。保护区的界面划分主要通过防雷系统、钢筋混凝土及金属管道等构成的屏蔽层而形成,从0级保护区到最内层保护区,必须实行分层多级保护,从而将过电压降到设备能承受的水平。一般而言,雷电流经传统避雷装置后约有50%是直接泄人大地,还有50%将平均流人各电气通道(如电源线,信号线和金属管道等)。
随着电脑通信设备的大规模使用,雷电以及操作瞬间过电压造成的危害越来越严重。以往的防护体系已不能满足电脑通信网络安全的要求。应从单纯一维防护转为三维防护,包括:防直击雷,防感应雷电波侵入,防雷电电磁感应,防地电位反击以及操作瞬间过电压影响等多方面作系统综合考虑。
多级分级(类)保护原则:即根据电气、微电子设备的不同功能及不同受保护程序和所属保护层确定保护要点作分类保护;根据雷电和操作瞬间过电压危害的可能通道从电源线到数据通信线路都应做多级层保护。
3.2.1 电源部分防护
弱电设备的电源雷电侵害主要是通过线路侵入。高压部分有专用高压避雷装置,电力传输线把对地的电压限制到小于6000V(1EEEEC62.41),而线对线则无法控制。所以,对380V低压线路应进行过电压保护,按国家规范应有三部分:建议在高压变压器后端到二次低压设备的总配电盘间的电缆内芯线两端应对地加避雷器或保护器,作一级保护;在二次低压设备的总配电盘至二次低压设备的配电箱间电缆内芯线两端应对地加装避雷器保护器,作二级保护;在所有重要的、精密的设备以及UPS的前端应对地加装避雷器或保护器,作为三级保护。目的是用分流(限幅)技术即采用高吸收能量的分流设备(避雷器)将雷电过电压(脉冲)能量分流泄人大地,达到保护目的,所以,分流(限幅)技术中采用防护器的品质、性能的好坏是直接关系网络保护的关键,因此,选择合格优良的避雷器或保护器至关重要。
3.2.2 信号部分保护
对于信息系统,应分为粗保护和精细保护。粗保护量级根据所属保护区的级别确定,精细保护要根据电子设备的敏感度来进行确定。
3.2.3 接地处理
一定要求有一个良好的接地系统,因所有防雷系统都需要通过接地系统把雷电流泄人大地,从而保护设备和人身安全。如果机房接地系统做得不好,不但会引起设备故障,烧坏元器件,严重的还将危害工作人员的生命安全。另外还有防干扰的屏蔽问题,防静电的问题都需要通过建立良好的接地系统来解决。
4 结论
弱电设备的防雷问题是一个综合性的工作,尤其是弱电设备的雷电浪涌防护还重视不够,也常常由其而引起设备的损坏,所以在完善弱电设备外部防护的同时,要加强弱电设备的内部防护,建议加强以下几方面的工作;
(1)首先要完善弱电外部雷电防护,将绝大部分雷电流直接接闪引入地下泄散。
(2)其次要阻塞沿电源线或数据、信号线引入的过电压波。
(3)第三限制钳位被保护设备上浪涌过压过流幅值在设备可承受的范围。
这三道防线,相互配合,各行其责,缺一不可。