嫩叶草回家旧址图片高清_免费18款深夜禁用黄尿入口_禁止18勿入的30000部芒果

  • IIANews微官网
    扫描二维码 进入微官网
    IIANews微信
    扫描二维码 关注微信
    移动客户端
  • English
2024全景工博会
电子元件

半导体基础知识

  2015年03月03日  

  1. 本征半导体及其特点

  纯净的半导体称为本征半导体。在热“激发”条件下,本征半导体中的电子和空穴是成对产生的;当电子和空穴相遇“复合”时,也成对消失;电子和空穴都是载流子;温度越高,“电子—空穴”对越多;在室温下,“电子—空穴”对少,故电阻率大。

  2. 掺杂半导体及其特点

  ( 1 ) N 型半导体:在本征硅或锗中掺入适量五价元素形成 N 型半导体, N 型半导体中电子为多子,空穴为少子;电子的数目(掺杂 + 热激发) = 空穴的数目(热激发) + 正粒子数;半导体对外仍呈电中性。

  ( 2 ) P 型半导体:在本征硅或锗中掺入适量三价元素,形成 P 型半导体,其空穴为多子,电子为少子;空穴的数目(掺杂 + 热激发) = 电子的数目(热激发) + 负粒子数;对外呈电中性。

  在本征半导体中,掺入适量杂质元素,就可以形成大量的多子,所以掺杂半导体的电阻率小,导电能力强。

  当 N 型半导体中再掺入更高密度的三价杂质元素,可转型为 P 型半导体;反之, P 型半导体也可通过掺入足够的五价元素而转型为 N 型半导体。

  3. 半导体中的两种电流

  ( 1 )漂移电流:在电场作用下,载流子定向运动所形成的电流则称为漂移电流。

  ( 2 )扩散电流:同一种载流子从浓度高处向浓度低处扩散所形成的电流为扩散电流。

  4. PN 结的形成

  通过一定的工艺,在同一块半导体基片的一边掺杂成 P 型,另一边掺杂成 N 型, P 型和 N 型的交界面处会形成 PN 结。

  P 区和 N 区中的载流子存在一定的浓度差,浓度差使多子向另一边扩散,从而产生了空间电荷和内电场;内电场将阻多子止扩散而促进少子漂移;当扩散与漂移达到动态平衡时,交界面上就会形成稳定的空间电荷层(或势垒区、耗尽层),即 PN 结形成。

  5. PN 结的单向导电性

  PN 结正向偏置时,空间电荷层变窄,内电场变弱,扩散大于漂移,正向电流很大(多子扩散形成), PN 结呈现为低电阻,称为正向导通。正向压降很小,且随温度上升而减小。

  PN 结反向偏置时,空间电荷层变宽,内电场增强,漂移大于扩散,反向电流很小(少子漂移形成), PN 结呈现为高电阻,称为反向截止。反偏电压在一定范围内,反向电流基本不变(也称为反向饱和电流),且随温度上升而增大。

  6. PN 结的电容特性

  (1)势垒电容CB:当外加在PN结两端的电压发生变化时,空间电荷层中的电荷量会发生变化,这一现象是一种电容效应,称为势垒电容。CB是非线性电容。

  (2)扩散电容CD:当PN结正向偏置时,多子扩散到对方区域后,在PN结边界附近有积累,并会有一定的浓度梯度。积累的电荷量也会随外加电压变化,引起电容效应,称为扩散电容。CD也是非线性电容。

最新视频
研祥智能AI无风扇工业控制器M60C   
ifm传感器课堂:IO-Link主站AL1X0X与Profinet通讯组态演示   
TE 成就稳定、高效的新能源储能系统
研祥金玛
专题报道
2024全景工博会
2024全景工博会 2024工博会以“工业聚能 新质领航”为全新主题,旨在瞄准我国新型工业化高质量发展的核心技术和重点领域,为产业转型升级提供良好的示范样板。
企业通讯
《我们的回答》ABB电气客户故事
《我们的回答》ABB电气客户故事

全球能源格局加速重构的今天,怎样走好复杂且极具挑战的电气化转型之路?如何用创新技术实现更多电力和更低排放,从而创造美好世

开关电源在设备升级中的性能影响和选型技巧
开关电源在设备升级中的性能影响和选型技巧

随着《中国制造2025》等政策的推进,新一代工业浪潮来临,工控行业迅猛发展,自动化设备需求与日俱增。众所周知,电源是设备

在线会议
热门标签

社区

综艺| 健康| 和政县| 阿尔山市| 休宁县| 台中市| 仙居县| 深州市| 肇州县| 宝应县|