3 变频调速节能原理
在冶金生产中,根据工艺要求和运行工况的不同,需对温度、压力、流量等过程参数进行调节,最常用的控制手段则是调节风门、挡板开度的大小来调整受控对象。这样,不论生产的需求大小,风机、水泵都要全速运转,而运行工况的变化则使得能量以风门、挡板的节流损失消耗掉了。在生产过程中,不仅控制精度受到限制,而且还造成大量的能源浪费和设备损耗。从而导致生产成本增加,设备使用寿命缩短,设备维护、维修费用高居不下。
通过流体力学的基本定律可知:风机、泵类设备均属平方转矩负载,其转速n与流量Q、压力H以及轴功率P具有如下关系:Q∝n,H∝n2,p∝n3;即,流量与转速成正比,压力与转速的平方成正比,轴功率与转速的立方成正比。因此,通过变频调速装置,降低电机转速来满足运行工况,具有极大的节能空间。例如:风机、水泵运行速度下降20%,功率则降为原功率的50%。
图5为离心风机水泵的风压、(水压)-风量(流量)Q曲线特性图。
风机水泵在管路特性曲R1工作时,工况点为A,其流量压力分别为Q1、H1,此时风机水泵所需的功率正比于H1与Q1的乘积,即正比于AH1OQ1的面积。由于工艺要求需减小风量(流量)到Q2,通过调节阀门开度,实际上是改变管网管阻,使管路特性曲线变为R2,风机水泵的工作点移到R2上的B点,风压(水压)增大到H2,这时风机水泵所需的功率正比H2Q2的面积,即正比于BH2OQ2的面积。显然风机水泵所需的功率变化并不明显。这种调节方式控制虽然简单,但功率消耗大、不利于节能,是以高运行成本换取简单控制方式。
若采用变频调速,风机水泵转速由n1下降到n2,这时工作点由A点移到C点,流量仍是Q2,压力由H2降到H3,这时变频调速后风机(水泵)所需的功率正比于H3与Q2的乘积,即正比于CH3OQ3的面积,由图5可见功率的减少是明显的。
4 节能实效
节能型高压变频器在马钢的除尘风机、煤气加压机、供排水等领域得到了广泛的推广应用,节能效果明显,项目节电率保持在20%以上,投资回收期在2~3年,取得了可观的经济效益,通过对高压变频装置投运以来运行情况跟踪,不同场合运行节能实绩如表1。
5 结论
通过对高压变频节能应用实绩的跟踪及分析,高压变频装置运行稳定,节能空间大;同时高压变频装置的应用,在取得较高节能效益的同时,减小了风机、水泵装置直接启动造成的设备冲击,降低了设备维护量,具有较高的推广应用价值。