摘 要:介绍了高压变频装置的结构以及节能原理,描述了高压变频器在马钢的应用情况,通过变频调速改造,达到节能的目的。 关键词:高压变频器;结构;节能;原理 Application of IIigh Power Frequency Converter with mgh Voltagein Maanshan Iron & Steel Co..Ltd.
BAO ZiLi,GAO Bin (Equipment Department,Maanshan Iron& Steel( .,Ltd.,Maanshan,Anhui 243000,China) Abstract:Structure and principle of energy saving of high voltage frequency converterare presented and application status of the frequency converter in Maanshan Iron & Steel Co..Ltd.is described.Through reconstruction of frequency speed control,it reaches the aim of energysaving. Key words:high voltage frequency converter structure;energy saving;principl 1 前言 风机、水泵类设备是钢铁生产行业的耗电大户,目前主要的控制方式是采用液力耦合器调速,或通过阀门来调节风量和水量;根据风机、水泵类负载特性,其中蕴藏着巨大的节能空间;通过高压大功率变频调速方案的实施,将会产生可观的经济效益。对降低吨钢耗水电指标,节能降耗起到积极的推动作用。随着计算机技术及IGBT等功率器件的飞速发展,高压大功率变频器产品已日渐成熟,在国内风机、水泵等场合的节能应用上得到了广泛的推广,但是对于不同的工况条件,节能效果上差别很大,不能盲目推广投运,必须对使用条件和现场工况作细致的研究。 2 高压变频器工作原理及特点 2.1 高压变频器的主要流派 高压大功率变频技术的主要流派有两种:(1)电压源型变频调速方案;(2)电流源型变频调速方案;其中电压源型变频调速方案又分为:移相整流串联叠加输出技术和三电平技术。考虑到对电网谐波、功率因数的要求,和普遍使用的6 kV和10 kV电压等级,以及从安全角度出发所提出的旁路要求,同时考虑到对原有普通电机的使用,我们选择了移相整流串联叠加输出技术。现对此技术作一简单介绍。 2.2 移相整流串联叠加输出技术高压变频器原理 高压变频调速系统采用直接“高一高”变换形式,为单元串联多电平拓扑结构,主体结构由多组功率模块串并联而成,由各组低压叠加而产生需要的高压输出,无须输出变压器,实现了直接3kV、6kV或10kV高压输出;它对电网谐波污染小,输人电流谐波畸变小于4%,直接满足IEEE519—1992的谐波抑制标准,输入功率因数高,不必采用输人谐波滤波器和功率因数补偿装置;输出波形质量好,不存在谐波引起的电机附加发热和转矩脉动、噪音、输出dv/dt、共模电压等问题,不必加输出滤波器就可以使用普通的异步电机。 所谓多重化技术就是每相由几个低压PWM功率单元串联组成,各功率单元由一个多绕组的隔离变压器供电,用高速微处理器实现控制和以光导纤维隔离驱动。多重化技术从根本上解决了一般6脉冲和12脉冲变频器所产生的谐波问题。图1为6kV变频器的主电路拓扑图,每组由8个额定电压为433V的功率单元串联,因此相电压为433V×8=3464V,所对应的线电压为6000V。每个功率单元由输入隔离变压器的24个二次绕组分别供电,24个二次绕组分成8组,每组之间存在一个7.5°的相位差。所需相差角度可通过变压器的不同联接组别来实现。用这种多重化技术构成的高压变频器,也称为单元串联多电平PWM电压型变频器,采用功率单元串联,而不是用传统的器件串联来实现高压输出,所以不存在器件均压的问题。
其系统结构和配置图如图2。
其系统工作原理如下: 功率单元(图3)由移相变压器的一组副边供电,通过三相全桥整流器将交流输入整流为直流。控制部分通过冗余设计的电源板从直流母线上取电,接收主控系统发送的PWM信号并通过控制IGBT的工作状态,输出PWM电压波形。
监控电路实时监控IGBT和直流母线的状态,将状态反馈回主控系统。在单元出现严重故障时,主控将打开功率单元的旁通回路,使单元进入旁通状态,避免整个变频器停机。大大提高了系统运行的可靠性。 每个单元输出PWM波,将每相N个功率单元的输出电压叠加,产生多重化的相电压波形,使相电压产生出2N+1个电压台阶,六个功率单元输出的PWM波形及叠加之后的相电压波形如图4所示。
|